Separating Wheat from Chaff: Winnowing
Unintended Prefixes using Machine Learning

Andra Lutu*t, Marcelo Bagnulof, Jesus Cid-Sueiro! and Olaf Maennel*

*Institute IMDEA Networks, Spain
TUniversity Carlos III of Madrid, Spain
iLoughborough University, Loughborough, UK

Abstract—In this paper, we propose the use of prefix visibility at
the interdomain level as an early symptom of anomalous events
in the Internet. We focus on detecting anomalies which, despite
their significant impact on the routing system, remain concealed
from state of the art tools. We design a machine learning system
to winnow the prefixes with unintended limited visibility — symp-
tomatic of anomalous events — from the prefixes with intended
limited visibility — resulting from legitimate routing operations.
We train a winnowing algorithm with ground-truth data on 20,000
operational limited visibility prefixes (LVPs) already classified by
the operators of the origin networks. The ground-truth was
collected using the BGP Visibility Scanner, a tool we developed to
provide operators with a multi-angle view on the efficacy of their
routing policies. We build a dataset with the pre-classified prefixes
and the features describing their visibility status dynamics. We
further use this dataset to derive a boosted decision tree which
winnows unintended LVPs with an accuracy of 95%.

I. INTRODUCTION

The performance of the global routing system is vital
to thousands of entities operating the Autonomous Systems
(ASes) which make up the Internet. The Border Gateway
Protocol (BGP) is currently responsible for the exchange of
reachability information and the selection of paths according
to their specified routing policies. By tweaking the BGP
configurations, the network operators are able to express their
interdomain routing preferences, designed to accommodate
myriad economic and technical goals. The implementation of
routing policies is a complicated process in itself, involving
fine-tuning operations. Thus, it is an error-prone task and
operators might end up with faulty configurations that impact
the efficacy of their strategies and, most important, their
revenues. Flawed routing policies cause for anomalies to
emerge in the Internet, including interdomain prefix leaks or
prefix hijacks. Over the last years, a lot of effort has gone in
the direction of identifying, classifying and eliminating some
of these anomalies [1].

Withal, even when correctly defining legitimate routing
policies, unforeseen interactions between ASes have been
observed to cause important disruptions that heavily affect the
global routing system [2]. The main reason behind this resides
in the fact that the actual inter-domain routing is the result of
the interplay of many routing policies from ASes across the
Internet, possibly bringing about a different outcome than the
one expected [3]. Consequently, in order to ensure the efficacy

of their routing policies, ASes need to periodically control how
their preferences resonate in the external routing system.

In light of the perpetuity of the above-mentioned causes of
anomalous interdomain events, there is an overall acute need
for a simple warning system for faulty configurations and/or
problematic external routing conditions to assist operators in
optimizing the performance of their routing policies. In this
paper, we argue that monitoring the prefix visibility at the
interdomain level can be used to detect a subset of anomalous
events that still remain hidden from state of the art tools [4],
[5], despite their important impact on the routing system.

Using the interdomain route propagation process reflected
in the global routing tables as an expression of routing policy
interaction, we introduce the concept of Limited-Visibility
Prefix (LVP). We define LVPs as stable long-lived Internet
routes that are visible in the routing tables of at least two
different ASes and in at most 95% of all the global routing
tables from the ASes analyzed. The choice of the 95%
visibility threshold allows for a 5% error in the routing tables
sampling process, also accommodating possible glitches that
may appear in the data. Contrariwise, we define the High-
Visibility Prefixes (HVPs) as the set of prefixes that are
propagated in at least 95% of all the available global routing
tables. We note that the limited visibility does not imply limited
reachability'. There could be a less-specific HV covering pre-
fix that provides reachability. Though some legitimate routing
policies of an AS constrain the visibility of its prefixes in
the Internet, the limited visibility can, more than often, stem
from human operator errors or unpredicted interplay with the
external netting of otherwise correctly defined routing policies.

The problem we challenge in this paper is distinguishing
the unintended LVPs, caused by misconfigurations or
unforeseen routing policies interactions, from the intended
LVPs, which are natural expressions of intentional routing
policies in the Internet. We design a machine learning
Winnowing Algorithm able to predict with 95% accuracy if a
LVP is intended or unintended. We rely on the robust machine
learning concept of boosted classification trees [7] to train the
system on ground-truth operational LVPs and thus enable it to

'In this sense, we also identify the Dark Prefixes (DPs) [6], which
represent the subset of LVPs that are not covered by any HV less-specific
prefix. These prefixes represent address space that, in the absence of a default
route, may not be globally reachable.

. Ground-Truth Winnowing A
LVPs Detection q)
> Dataset ~ Unintended LVPs ~
BSEisibiliy Poll ASes originating LVPs MachineLearning
Scanner Approach

Obtain feedback from ASes
originating LVPs and are
using the BGP Visibility

Add visibility features to
the ground-truth
dataset

Retrieve raw routing
data

Identify the Global Scanner

Routing Tables (GRTs) Boost tree-based model

using the AdaBoost.M1

Build ground-truth dataset
with intended and

Apply the Visibility unintentded LVPs

Scanner Algorithm
Find the LVPs

Predict new LVP class
using the Winnowing
Algorithm

Fig. 1.
learn the patterns of misconfigurations and backfired routing
policies which are normally hard to detect. The classification
model uses only visibility-related per-prefix features in order
to predict the type of the LVPs.

Figure 1 shows the flowchart of the work we propose in
this paper. Each processing block depicted summarizes one of
the three main steps for building the winnowing system.

First, we use the BGP Visibility Scanner as a data-
mining engine for retrieving stable prefixes with limited
visibility at the interdomain level. The tool corroborates
BGP routing information from more than 150 vantage points
in the Internet, each within a different AS. Thus, it enables
operators to achieve a multi-angled perspective on how their
routing policies reflect at the interdomain level. Using the
routing data retrieved from the widely-popular RIPE RIS?
and RouteViews?® projects, the tool analyses the public routing
tables to retrieve LVPs on a daily basis. We have publicly
released the BGP Visibility Scanner* in November 2012,
allowing any network operator to check if the AS originates
LVPs. Since the moment we have first made it available, the
tool has been well received by the operational community>
and it continues to attract a large amount of attention and
feedback. In Section II, we provide a detailed description of
the methodology employed by the scanner to detect the LVPs.

Second, using the survey integrated with the BGP Visibility
Scanner, we perform a poll on the ASes originating LVPs,
inquiring if the identified prefixes are intended LVPs or not.
Thus, we build a unique ground-truth dataset of 20,000
LVPs classified according to the direct feedback obtained
from the ASes responding to the poll. This dataset brings
additional value to the system in that it accurately documents
the distinct causes for LVPs and provides a deep understanding
of the routing conditions which allows them to emerge. For ex-
ample, we were able to identify more than 18,000 unintended
LVPs and assist the origin networks in identifying their causes.
Given that presently the visibility scanner detects, in average,
90,000 LVPs daily, the ground-truth dataset represents a sta-
tistically relevant sample of LVPs, recording multiple cases
of misconfigurations, unforeseen interactions and intentional

Winnowing system flowchart.

2RIPE RIS raw data: http://www.ripe.net/data-tools/stats/ris/ris-raw-data

3University of Oregon Route Views Project: http://www.routeviews.org/

4The BGP Visibility Scanner is publicly available at visibility.it.uc3m.es

5The BGP Visibility Scanner [8] has been presented in different network
operators group meetings, including NANOG, LACNOG, UKNOF, EsNOG,
and has also been announced on RIPE Labs [5].

routing policies effects. In Section III we further expand on
several of these operational examples.

Third, leveraging the machine-learning model of boosted
classification trees, we design the Winnowing Algorithm to
distinguish unintended LVPs from the ones which are the
stable expression of intended routing policies. The main
idea behind this algorithm is to combine many base learners,
e.g., in our case the decision trees, to produce one robust
classification algorithm. Using the exclusive ground-truth we
have previously described, we derive a classification model to
accurately winnow the identified LVPs. This brings real value
to the operational community given that it has the capacity
of revealing routing issues which are not easily discovered
otherwise. We further expand on this approach in section IV.

II. MINING LIMITED VISIBILITY PREFIXES

The BGP Visibility Scanner is a data mining® tool for identi-
fying stable prefixes with limited visibility at the interdomain
level. In rough numbers, the visibility scanner detects on a
daily basis around 90,000 LVPs and 430,000 HVPs. The daily
set of prefixes with limited visibility can be queried using
the BGP Visibility Scanner public web-page. Our goal is to
collect feedback from the ASes querying for LVPs and to
validate if the intention of the origin network is reflected in
the visibility status of its prefixes. In this section we explain
the methodology we use for parsing large datasets of raw BGP
routing data to identify the visibility patterns of interest. An
early version of this tool is documented in [8].

A. Refining the Raw Routing Data

We work with publicly available routing data, periodically
retrieved from the RouteViews and RIPE RIS projects. These
two repositories gather BGP data throughout the world, cur-
rently deploying 24 different collection points, which we fur-
ther refer to as collectors. The collectors periodically receive
over 400 BGP routing table snapshots, i.e., the content of
the routing table at a certain moment in time from a router
within an AS active as a monitor. A monitor represents a
network peering with the public RIS/RouteViews repositories
and willingly propagating its routing information to a collector.
The monitors have different policies with respect to the
public repositories, thus providing different types of routing
feeds. We are able to identify three different types of feeds
injected to collectors, namely Partial Routing Tables, Global
Routing Tables and Global Routing Table with internal routes.
However, only by comparing what we call Global Routing
Tables (GRTs), we can identify the sets of HV and LV prefixes
which are of further interest. For the purpose of this paper, we
loosely define the GRT as the entire routing table provided by
a network to its customers requesting a full routing feed. This
is not a formal definition, but it captures the main idea behind
the type of data required by the system.

5We loosely use the term data mining as the process of collecting, searching
through, and analyzing a large amount of data in order to discover patterns
or relationships.

Raw

data GRTs Visibility Scanner Algorithm
RIS-' Size filter {Clean GRTs Labeling Mechanism Laes P.r Eyalence
RouteViews Sieve
/Download) ‘Minimum | Remove for (tin{8h, 16h})do { for ip in prefs[day] do
all the 400.000 prefixes: prefs(t].getVisibleDegree() if HV in labels[ip]
available | _routes | 7, poas prefs[t].reminternalPrefs() } thep
routing — « Bogons forip in prefs[t] do labels[ip] = HV
feeds twice | | | Eliminate 4 if (visibility(ip, t) < else if
per day, at duplllcate floor(95%*nr_monitors[t])) length(labels[ip]) ==
08h00 routing) 2 then
and16h00 feeds then labels[ip] = LV
R labels[ip].append(LV) else
else labels[ip] = transient
labels[ip].append(HV)
Fig. 2. LVPs Detection: Detailed methodology used for the BGP Visibility

Scanner in Step 1 of the winnowing system flowchart depicted in Figure 1.

In Figure 2 we depict the main steps we follow for process-
ing the raw data within the BGP Visibility Scanner. The first
two processing blocks, namely Raw data and GRTs, focus on
retrieving the routing data and parsing it in order to eliminate
the unnecessary information. First, in order to exclude the
Partial Routing Tables from the whole set of feeds, we verify
the actual size of the routing table. We consider that a global
routing table from a monitor should have no less than 400,000
routing entries [9]. Consequently, we keep for further study
only the routing feeds that comply with the minimum limit
on the number of prefixes. Second, we perform a couple of
“sanitary” checks on the actual data contained in the identified
GRTs, in order to further discard the information that is of no
interest for the visibility scanner. Hence, using periodically
updated filters from [10], we build the bogon filter which
we apply on all the GRTs to eliminate any class of routes
which should never appear in the Internet. At this point, it is
also important to filter out the cases of prefixes emerging as
LV prefixes which, in fact, are internal routes of the active
monitors. In order to discard any internal paths, we remove
all the routes learned only from one monitor, which is also
the origin AS for the prefixes in question.

B. The Visibility Scanner Algorithm: Mining for LVPs

Having obtained the “clean” version of the GRTs, we further
apply the Visibility Scanner Algorithm for identifying pre-
fixes with stable limited visibility in the Internet, as depicted in
Figure 2. Additionally, though converging routes also appear
as limited visibility prefixes, they do not consist a routing
policy expression. We avoid this type of false positive limited
visibility prefixes in our results by analyzing two different
samples of routing tables taken 8-hours apart. We define the
visibility degree as the number of GRTs within the daily
sample which contain (i.e., “see”) a certain prefix, and the
visibility label as the visibility status of each prefix, i.e. LV
for Limited Visibility and HV for High Visibility.

We evaluate the visibility degree at every sampling moment
and assign a visibility label at each time. We define Limited
Visibility prefixes as prefixes present in less than 95% of the
active monitors at a sampling time. Otherwise, the prefixes are
defined as High Visibility prefixes. According to our threshold
sensitivity analysis, we find that the set of LVPs is not sensitive
to the value of the 95% visibility threshold [8]. Based on the
visibility degree of the prefixes at each of the two sampling

times (i.e. 08h00 and 16h00 UTC), we assign each prefix two
corresponding visibility labels.

When deriving the final visibility label, we account for the
dynamics of a prefix in time, as presented in the last block
from Figure 2. The high visibility of a prefix in at least one
monitor sample hints the fact that the route could reach all the
observed ASes. Should this change during the analyzed time, it
might be a cause of, for example, topology changes or failures.
Therefore, we consider that the HV label always prevails, i.e.
if a prefix is tagged as HV in one of the samples, it is tagged
as HV in the final set. Otherwise, when no HV label is tagged,
we analyze the cases of LV prefixes emerging in our results.
If a prefix appears only at one sampling time and it is tagged
as LVP, this might be a sign that the prefix is in the process of
being withdrawn or, contrariwise, in the process of converging
after just being injected. These particular routes cannot be
qualified within the visibility scanner, thus we filter out any
prefix with only one label in a day and that label being LV.
The only case where we can say a prefix has limited visibility
and mark it accordingly, is when the two labels assigned at
each sampling time are both LV.

C. The LVPs in Rough Numbers

The set of LV prefixes identified using the BGP Visibility
Scanner is made publicly available so that each network can
check the status of its prefixes. The results are refreshed on
a daily basis such that the networks can have an updated
view on the efficacy of their routing policies. Every day we
collect more than 500 routing feeds, for each of the two
different sampling moments. After applying the cleansing
process, we distinguish, in average, /50 GRTs injected to
the public repositories by unique ASes. We then compare the
content of the 150 GRTs in order to identify the LVPs. In rough
numbers, the daily overall total number of prefixes identified is
around 550,000 prefixes. Out of these, around /0,000 prefixes
are singled out as leaked internal routes and, consequently,
discarded from our analysis. Furthermore, we remove the
converging routes that may emerge as limited visibility in the
visibility scanner. This incurs the elimination of about 8,000
additional prefixes in average. For the remaining prefixes we
continue our visibility analysis and assign LV/HV visibility
tags. We thus identify about 90,000 prefixes in average that are
tagged LVP and around 420,000 prefixes marked HVP. When
checking how the two sets of prefixes overlap, we find that
there are more than 2,500 LV prefixes without a covering high-
visibility prefix, which we mark DP. We have observed more
than 3,800 networks which inject limited visibility prefixes,
out of which less than 1000 ASes originate DPs. These
numbers may vary from day to day, given that neither the
monitors providing their global routing tables, nor the actual
content of the GRTs are the same in time.

III. GROUND-TRUTH: UNDERSTANDING LVPs THROUGH
OPERATIONAL USE CASES

The daily set of visibility data can be accessed by querying
the BGP Visibility Scanner on a per-origin AS basis. Since

the tool first became publicly available, it gathered over 5,000
queries performed for more than 1,200 different origin ASes.
Using the survey integrated with the Visibility Scanner, we
have performed a poll on some of the ASes which were
originating LVPs. Leveraging the feedback received, we build
a unique ground-truth dataset including 20,000 LVPs. For each
of these prefixes, the network operators reported which was
the expected visibility status of the prefixes after defining their
interdomain routing policies. We match the origin’s intention
with the observed visibility status of the prefixes identified
with the BGP Visibility Scanner, and separate the LVPs in
two pre-determined classes: infended and unintended. As a
results, we identify 1,150 prefixes of the class intended and a
staggering 18,850 LVPs of the class unintended. We note that
the ground-truth dataset exhibits an important disproportion
between the two defined classes. The class imbalance problem
is a well-know issue in the machine-learning domain and it is
characteristic to many other real-life applications.

After analyzing the feedback received on 20,000 operational
LVPs out of the 90,000 identified on a daily average, we learn
about a significant variety of factors which lead to prefixes
with limited visibility. We develop next on a few relevant
operational examples.

A. Intended LVPs

Some ASes create LVPs on purpose. There are several
ways this can be done, including scoped advertisements (e.g.
geographically scoped prefixes to offer connectivity only to
networks located in a certain region) or advertisements only
through (some) peering and not transit relationships. We
next provide real cases of ASes deliberately restricting the
propagation of their prefixes. For example, using the BGP
Visibility Scanner, we were able to verify and validate the
routing policies of two of the Internet DNS root-servers. For
each root-server we have identified the presence of one more-
specific LV prefix, which is meant for providing connectivity
only to direct peers and, consequently, is tagged with the
well-known NO-EXPORT community. The limited visibility
of the more-specific prefix correctly reflects the impact of the
NO-EXPORT community on the connectivity of the prefix.
However, the LV prefix has global reachability due to the
presence of HV less-specific prefixes, which is used by the
root-servers in order to avoid connectivity issues.

In another case, the tool also validated the routing policy of
a large content provider which deliberately limits the visibility
of one of its prefixes in order to ensure that the incoming traffic
is fed only through a geographically-specific local path.

B. Unintended LVPs

The second type of use cases we present captures unin-
tended results of routing policies, i.e., accidental misconfig-
urations or unforeseen interactions between external routing
policies at the interdomain level.

1) Misconfigurations/Accidental Errors:

In many cases, LVPs are the result of errors in the configura-

tion of filters of the origin or other ASes that have received

Empirical CDF
T T

o o o o 4
o o N » © =
T T T T T T

Proportion of LVPs
which have been active for a number of days < x

o
T

o
IS
T

o
©
T

o
N
T

o

| ; |
50 150 200 250 300
Number of days active within the June 2012 — April 2013 period

Fig. 3. Empirical CDF of LVPs known to be unintended on the number of
days they were active from June 2012 until the end of April 2013.

the prefix announcement. For example, a large and widely-
spread ISP learned that a large set of prefixes with limited
visibility were leaking through some of its direct peers.
After further investigation, the ISP was able to identify the
misconfiguration of its outbound prefix-filters, which should
have otherwise ensured that those prefixes were not being
advertised to other networks. After correcting these issues,
the origin AS successfully eliminated 4,000 unintended
LVPs of whose existence it was previously unaware even if
they were affecting the receiver’s routing policies for these
prefixes. We note that these misconfigurations remained
undetected for a very long time, given that we were able to
detect the LVPs in question with more than 6 months before
the BGP Visibility Scanner became operational.
2) Inflicted by Third-parties:

The interactions with legitimate and correctly defined rout-
ing policies of third-party ASes can limit the visibility of
some prefixes at the interdomain level. For example, in
the case of two different networks with correctly defined
routing policies, the operators reported that the limited
visibility of their prefixes is due to the impact of the filtering
policies deployed by third-party ASes. More exactly, since
the LVPs detected did not have an object defined in the
Regional Registry’s database, they were discarded by the
ASes filtering based on the information retrieved from the
registry databases. This, consequently, caused the prefix to
suffer from unintended limited visibility at the interdomain
level. Thanks to the BGP Visibility Scanner, the origin
networks have discovered and solved the issue.

A clear example of the serious impact that these type
of undetected mistakes might have on the origin networks
is the case of an ISP whose prefixes were labeled by the
Visibility Scanner as long-lived dark prefixes. This not only
means that the prefixes were not globally propagated, but
might have been suffering from limited reachability in the
Internet. After investigating this issue, the origin AS found
that, due to a mistake in the configurations of its transit
provider, the prefixes were not being correctly advertised.

We have previously stated that the anomalous events included
in the unintended LVPs dataset remain undetected for a long
time. For example, for the majority of the operational cases of
unintended LVPs above-explained, we have observed that the
prefixes were originated long time before the BGP Visibility

0 350

\/ LVPs \,> Study Design D Decision-Tree Induction
y 7 / /

Boosted
Decision Trees

Tree-based
Model

Error
Measures

Supervised

g Data Structure
Learning

Derive basic Boost CART

Build ground- Train-Validation- ‘ True
CART model

truth dataset Test Design | positive
L rate

g Improve
False Choose accuracy
positive visibility

rate features

Split dataset:

* 10% testing

*90% training-
validating ROC
*80% training
*20% validation

Add 9
visibility
features after
observing
the LVPs over
14 days.

Avoid over-

Verify fitting

performance
with ROC

curves

curves y .

Find optimal

operational
point

Performance
on test set

Fig. 4. Winnowing Unintended LVPs: detailed methodology used for step 3
of the winnowing system flowchart depicted in Figure 1.

Scanner tool was used to verify their existence. In order to
support our statement on the average lifetime of a limited-
visibility prefix, we use the BGP Visibility Scanner to generate
the daily set of LVPs across a period of 11 months, from
the beginning of June 2012 until the end of April 2013. This
enables us to capture the dynamics of the LVP within this
period. Figure 3 depicts the empirical CDF of the LVPs known
to be unintended on the time they were active within this 11
months period.

IV. WINNOWING UNINTENDED LVPS: THE MACHINE
LEARNING APPROACH

In this section we propose a supervised learning approach
for the classification of LVPs in two predetermined classes,
namely intended expressions of routing policies or unintended
LVPs generated by errors or by complex interaction between
networks. Following the system flowchart depicted in Figure
1, this section corresponds to the last processing block in our
work. Figure 4 shows an aggregated view on the different steps
of this last part integrated in the winnowing system. We first
describe the dataset we work with and the visibility features
considered. We present the proposed machine learning study
design and talk about the error measures we try to optimize.
We advance a decision tree model using the optimal set of
features, chosen according to the information gain measure.
Leveraging the popular AdaBoost [7] algorithm, we boost the
obtained basic model for achieving higher accuracy. We finally
test the boosted tree-based model on the hold-out dataset.

A. Study Design

The ground-truth consists of 20,000 LVPs, each pre-
classified to indicate if the prefix has unintended limited
visibility or if it is the consequence of intended interdomain
behaviour. In order to use it for building the machine learning
Winnowing Algorithm, we first identify the full set of visibility
features which we attach to each prefix. For every LVP, the
origin AS is observed over a period of /4 days prior to
the feedback moment, to characterize the visibility dynamics
captured in the BGP Visibility Scanner. All the possible
visibility parameters are listed and explained in Table I.

We design the learning process in a training-validation-test
format, as illustrated in the second processing block of the
flowchart in Figure 4. The three datasets considered in the
study design must be perfectly disjoint (i.e., we should observe
no prefixes nor origin ASes in common between any two

datasets of the three defined). We thus split the ground-truth
such that all the LVPs generated by the same AS are included
in one unique dataset. We impose these restrictions in order
to ensure a correct estimation of the algorithm performance
when predicting the class of LVPs originated by new ASes,
on which we have no prior ground-truth. This is a challenge,
since predicting the class of LVPs originated by a network on
which we have previously trained is significantly easier.

1) Data Structure: We first create the hold-out test dataset,
by randomly choosing 10% of all the ASes which provided
feedback. This hold-out test set is under no circumstances to be
used in the training-validation phase of the learning process.
Its main purpose is to provide a realistic estimation of the
performance of the optimal winnowing algorithm derived in
the training-validation phase, by using independent data on
which the algorithm was not previously trained nor validated.

We split the remaining data in two different sets, namely
the training and validation datasets. We perform the separation
such that the training dataset has approximatively 80% of the
remaining ground-truth dataset, and the validation set, the rest
of 20%. We require that this constraint is respected from the
point of view of the total number of prefixes and also from
the point of view of the number of different ASes, i.e., 80%
of ASes must be in the training dataset and the rest of 20% in
the validation dataset. Additionally, we require that the 80-20
split for the training-validation datasets is also respected for
each of the two classes of prefixes. In other words, we must
have 80% of the intended LVPs in the training and the rest
20% in the validation dataset and the same for the unintended
LVPs. We impose these rules to ensure a similar distribution
of prefixes and ASes in the training and in the validation
datasets. We identify exactly 989 different ways in which the
training-validation split can be done such that all the imposed
constraints are met. In rough numbers, this means training
on about 15,000 LVPs, validating on about 4,500 LVPs and,
finally, testing on approximatively 100 independent LVPs.

We use the training dataset to derive the classification
algorithm. To verify the performance of the model, we then
perform an initial test of the classification model on the
validation data. We repeat the training and initial testing for
every of the 989 data splits and we choose an optimal overall
algorithm. This optimal algorithm is thus finally evaluated by
testing on new independent data, i.e., the hold-out data.

2) Error Measures: Before explaining the model selection
and assessment, we first need to define the error measures
which correctly describe the performance of the classification
algorithm. Generally speaking, the accuracy of a classifier is
defined as the percentage of ground-truth tuples which are
correctly classified when tested on a set of data the model
was not previously trained on. However, even when we obtain
a very high value for the accuracy of the classifier, it may
be the case that the model does not recognize very well the
tuples of one of the two classes, especially when dealing with
unbalanced classes in the data, which is our case. To evaluate
the model performance, we define the following four concepts:

o True Positive tuples [TP]: number of tuples classified as

TABLE I
THE LIST OF PER-LVP VISIBILITY FEATURES. ALL THE VALUES ARE CALCULATED FOR AN OBSERVATION PERIOD OF 14 DAYS. THE FEATURES ARE
ORDERED IN DECREASING ORDER OF THEIR IMPORTANCE, ACCORDING TO THE INFORMATION GAIN.

| Extracted per-LVP Feature | Explanation | Information Gain [weights] |

mean_nrPrefs Average number of LVPs generated by the same origin AS 0.319
mean_MonitorsDetecting | Average proportion of active monitors detecting the LVP 0.308
std_MonitorsDetecting Standard deviation of the proportion of active monitors detecting the LVP 0.3068

std_nrPrefs Standard deviation of the number of LVPs generated by the same origin AS | 0.3060
mean_VisibilityDegree Average absolute visibility degree for the LVP 0.244
std_VisibilityDegree Standard deviation of the absolute visibility degree for the LVP 0.234

length Prefix length of the LVP detected by the BGP Visibility Scanner 0.183

TimeActive Proportion of time the LVP remained with limited visibility 0.153

VisibilityLabel Visibility label assigned by the BGP Visibility Scanner [LVP/DP] 8.61e-05

unintended, which really are of unintended class.

o False Positive tuples [FP]: number of tuples classified as
unintended, which really are of intended class.

o True Negative tuples [TN]: number of tuples classified as
intended, which really are of intended class.

o False Negative tuples [FN]: number of tuples classified
as intended, which really are of unintended class.

We further can define the two error metrics which allow us
to correctly evaluate the performance of the classification by
capturing the per-class classification accuracy. Namely, we use
True Positive rate [TP..] and False Positive rate [FP,..],
defined as follows:

TP
TPrae:P intended intended ~—
’ (unintended | unintended) TP + FN
FP, . = P(unintended | intended) kil
rare = P(unintended | intende TN+ FP"

Intuitively, the T'P,.;. represents the probability of predicting
a tuple as unintended, conditioned by the fact that the tuple
is indeed unintended. Similarly, the F'P,,. represents the
probability of classifying a tuple as unintended, conditioned
by the fact that the tuple is actually intended.

We use Receiver Operating Characteristic (ROC) curves to
visualize the performance of a classifier. Given a binary clas-
sification problem, like the one we are currently addressing,
ROC curves allow us to analyze the trade-off between the true
positive rate and the false positive rate. Many classification
models, including decision trees, assign a probability to every
tuple, expressing the degree to which the tuple is considered
to belong to a certain class. By setting a decision threshold on
these probabilities, we obtain a categorical classifier, i.e., the
tuples are classified as unintended if their probability is higher
than the fixed threshold, and “intended” otherwise. The per-
formance of such a model is characterized by a single (TP,
FP,4) pair of values which can be plotted in the ROC space.
When considering different values of the decision threshold,
we obtain a set of points capturing the TP,y to FPpy trade-
off which can be plotted in the ROC space.Together, these
points form the ROC curve of the decision model. Overall,
the ROC curve gives an aggregated view on the performance
of the model, without reference to a specific threshold value.

To asses the general performance of various models using
the ROC space, we can measure the area under the curve
(AUC). The ROC space usually shows an ascending diagonal
line, corresponding to the ROC curve of a non-informative
classifier (i.e. one making stochastic decisions independent on

data). As the ROC curve goes closer to this line, the AUC goes
closer to 0.5 and the model becomes less accurate, up to the
point of random or even worse than random. Consequently, an
AUC closer to 1 shows high performance for the model.

The ROC curve can be used to determine the operating
point for the classification model. Note that, since each point
in the curve corresponds to a decision threshold, selecting the
operating point is equivalent to selecting a decision threshold.
This selection may depend on the design considerations. For
instance, if positive and negative examples are equally likely,
the operating point maximizing the sum between the TP, and
1 —FP, could be a good choice, because this is equivalent to
maximizing the number of correctly detected tuples. However,
the decision model operating with this threshold may not pro-
vide good results on new datasets with different distributions
of tuples per class. To this end, a robust choice of the operating
point is the break even point. The latter represents the value
of the threshold where FP is equal to FN, and it can be
shown to optimize the performance of the classifier under
worst case conditions, i.e. under adversarial choices of the
class distributions.

B. Decision Tree Induction

After previously defining the data structure, error measures
and tools for assessing the performance of a classification
model, we next explain the constructive process we follow
in order to derive the tree-based Winnowing Algorithm. Fol-
lowing the flowchart depicted in Figure 4, we thus proceed to
the last step, namely the decision tree induction. In the model,
we choose decision trees as base learners which are boosted
to create a robust classification model.

Decision tree induction is the process of deriving decision
trees from the ground-truth datasets [11]. We use the training
datasets to build the decision model, whose performance we
initially evaluate using the validation datasets. We determine
the overall optimal decision threshold and we further test the
calibrated boosted decision tree on the hold-out dataset.

1) Decision Tree Model: In our work, we use the exten-
sively tested and popular machine learning method called
Classification and Regression Trees (CART) [12] for deriving
and fine-tuning an anomaly decision tree model. Using all the
989 different data splits, we determine the optimal decision
tree to be used in the following step, where by boosting
we combine multiple such base learners to form a robust
classification model. We derive the decision trees using the
standard library tree for R [13].

Tree-based learning methods rely on iteratively partitioning
the data into smaller groups of similar elements [11]. The
splitting of the data is done using the features that best
separate the outcomes. The key idea is to chose the splits
which maximize the group homogeneity, i.e., how similar
are the elements within the same group, or until the small
groups are sufficiently pure. Choosing the right number of
splits is a challenge, since we can easily overfit the model by
considering splits that are very specific to the training data,
or, contrariwise, underfit it by considering shallow general
splits. Finding the correct balance is conditioned by finding
the optimal set of features used to partition the data.

We next perform the feature selection in accordance with
the information gain for each of the visibility features. The
information gain is a widely accepted method for evaluating
the capacity of a feature to distinguish between tuples of
different classes. In the third column of Table I we show
the weights associated to each of the 9 different visibility
parameters after evaluating the information gain. In order
to select the subset of features which ensures the optimal
performance of the base learner for any training-validation
data configuration, we adopt a progressive approach. We first
verify the performance in every of the 989 training-validation
splits of a tree model using only the highest weighted feature
to classify the samples in the validation dataset. In a nut-
shell, we grow a different decision tree on each of the 989
training datasets, using as class-discriminating feature on the
mean_nrPrefs. We then validate each of these 989 trees on
the validation dataset of the considered data split and derive
one ROC curve. Once having obtained 989 different ROC
curves, we calculate the overall average performance of the
decision tree by evaluating the average true positive rate and
false positive rate at different decision thresholds. For every
value of the threshold, the averaging algorithm selects from
each ROC curve the corresponding point. These points are then
averaged and produce a point for every value of the threshold,
thus generating the threshold average ROC curve.

Next, in decreasing order of the per-feature Information
Gain weight values, we progressively add one new feature
to the tree classification model and evaluate its performance,
e.g., if we were initially classifying only with mean_nrPrefs,
in the next model we add mean_MonitorsDetecting, and so
on. In total, we derive 989 x 9 ROC curves corresponding
to each of the [feature subset - data split] combination. We
repeat the process explained above for deriving the threshold
averaged ROC curve per feature subset. We depict in Figure
5 the threshold-averaged ROC curve in each of the 9 cases.

To further identify the optimal set of features, we compare
the AUC for the 9 different ROC curves in Figure 5. Conse-
quently, we observe that the classification tree using the first
7 most-important features has the highest performance, with
an average AUC equal to 0.94. In the overall best operating
point for all the 989 data splits, the decision tree has an average
TPrae equal to 0.99 and an average FP.,. equal to O.1.

2) Boosting for Improved Accuracy: We previously deter-
mined that the optimal decision tree uses only the first 7 most-

S 1 1 9" 0.8 07° 06 05 0.4 0.3 0.2 0.1
g 7,
, /.,
" ’
o | N 7y
° W ‘o
[l’ ’
W, 4
2 M ’
S < 7y
o ° ’ /
2 A,
‘@ s,
g "
Q ’
o 3 b
E 1 feature
t - - 2features
h - - 3features
« 'y - 4features
C 'y - - b5features
& - - 6features
' — 7 features
- - 8features
S - - 9features
T T T T T T
00 02 04 06 08 1.0
False positive rate
Fig. 5. Threshold-average ROC curves for performance estimation of the

decision tree built with the 9 feature-sets. The red continuous curve for the
model using the 7 most important features has the highest AUC and, thus, is
the optimal model.

important visibility features (as explained in Table I) to classify
the LVPs. In order to improve the classification performance
across all the possible data splits, we further combine 50 such
base learners using the ensemble technique called boosting
[14]. Boosting is one the most powerful learning mechanisms
proposed in the last 20 years, used to improve the accuracy of
a classification algorithm. The main idea behind this algorithm
is to combine many base classifiers (e.g., in our case, CART
models built with 7 features) to produce one robust classifi-
cation algorithm. Unlike other boosting algorithms, AdaBoost
[7] adjusts adaptively to the errors of the base learners derived
at each iteration. For the purpose of this paper, we use the
AdaBoost.M1 algorithm implemented in the publicly available
package adabag [15] for R. In order to assure good general
performance of the boosted tree-based model with 7 features,
we determine next the overall optimal decision threshold in
every of the 989 splits.

3) Learning the Optimal Decision Threshold: We boost the
optimal decision tree for 50 times in the case of each of the 989
possible training-validation data configurations. Consequently,
we train the classification model on the corresponding training
dataset and perform an initial performance evaluation on the
validation dataset. For each of the 989 boosted decision trees
obtained, we derive the associated ROC curve, to obtain an
aggregated view of the performance of each classifier. In order
to determine the overall optimal operating point for the 989
models, we then calculate the threshold averaged ROC curve
using all the 989 ROC curves.

Next, using the threshold-average ROC curve in Figure 6,
we determine the optimal decision threshold for the boosted
classification tree. We first note that, independently of the
threshold value, the classification model is generally very
accurate for any of the training-validation splits, with an
AUC equal to 0.997. Moreover, we observe that in the best
operating point, the decision algorithm has an average true
positive rate equal to 0.98, and an average false positive rate
of 0.05. The average accuracy of the decision model is 98%.

True positive rate

T T
0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

Fig. 6. Threshold-average ROC curve of the boosted decision trees derived
using each of the 989 possible data splits.

Though this is a very positive result, our aim is to design a
classification algorithm which generalizes well by accurately
predicting for any previously unknown case of AS originating
LVPs. Given that for a new AS we do not have ways to learn
the distribution of intended and uninteded prefixes, we choose
as optimal operating point the value of the threshold where the
performance of the algorithm is the highest for any possible
distribution of prefixes per class. In other words, we choose
the value of the threshold which gives the best performance
under the worst known conditions. This point is the break
even point, where the threshold value is equal to 0.6. In this
operating point, the decision algorithm has an average true
positive rate equal to 0.99, and an average false positive rate
of 0.24. The average accuracy of the tree-based model at the
break-even point is 95%. Though we observe a slightly weaker
performance than in the best operating point, we ensure that
the decision algorithm at the break even point achieves optimal
performance for new cases of ASes originating LVPs. We
further refer to the boosted tree-based classification model
using the 7 most-important features and operating with a
decision threshold of 0.6 as the Winnowing Algorithm.

C. Performance on the Hold-Out Dataset

To further asses the Winnowing Algorithm performance, we
test the model on the held-out independent dataset, which has
not been previously used for training or for validation. We
train the prediction model on all the available ground-truth
data, encompassing both validation and training datasets. We
then test the boosted decision tree on the tuples in the held-
out dataset. The performance of the winnowing algorithm is
characterized by an average true positive rate of 0.951, with a
95% confidence interval of [0.87, 0.99] and an average false
positive rate of 0.01, with 95% confidence intervals of [0,
0.02]. We further calculate the accuracy of the Winnowing
Algorithm, by evaluating the overall proportion of tuples
correctly identified. We obtain an average accuracy on the
held-out test set equal to 97.2%.

V. DISCUSSION

In the previous section, we have built the Winnowing
Algorithm, a boosted decision tree which can classify with
95% accuracy new LVPs detected with the BGP Visibility
Scanner. Though the machine learning approach is gaining
popularity for Internet-oriented applications, it is sometimes
hard to understand its underlying. In this section, we provide
the intuition behind the decision rules implemented in the
winnowing system.

A. On the Visibility Features

One particularity of the Winnowing Algorithm is that, for
classifying, it builds upon the 7 most important visibility
features of the available ground-truth LVPs. We further observe
that the set of features is consistent with the operational
status of the routing system. For example, it has been long
observed that accidental leaks usually generate a large number
of prefixes at once. This explains why, in the context of the
Winnowing Algorithm, the most important feature used to
pinpoint unintended LVPs is the average number of LVPs
injected by the same origin AS. Also, a high variation in
the total number of LVPs from the same origin AS hints
that the prefixes may not be expressions of stable long-lived
routing expressions, but merely a side-effect of unexpected
routing events. Additionally, we use the visibility degree
and the proportion of active monitors from the daily sample
detecting LVPs. This features capture the prefix visibility
dynamics caused by the variations in the daily set of active
monitors used. For example, we have observed that majority of
unintended prefixes have a stable visibility degree of about 3,
which is consistent with the fact that misconfigurations usually
affect the routing policies of the ASes in the direct vicinity of
the origin. Furthermore, discarding the last two features can
be rationalized using the ground-truth data. For instance, as
previously depicted in Figure 3, the lifetime of wunintended
LVPs is much longer than the expected lifetime of easily-
noticeable anomalous events, which are quickly fixed by the
origin. Thus, the parameter time_active does not discriminate
well between the two classes of LVPs.

B. On the Data Structure

One of the restrictions we impose in the data structure
proposed in the machine learning study design is that the
LVPs originated by the same AS be all included in the same
dataset, namely training, validation or testing. This restriction
ensures that we are correctly using our winnowing mechanism
to distinguish between LVPs from new ASes that might be
suffering from unforeseen events. However, it is also important
to accurately classify new LVPs from a network which already
provided feedback used for deriving the Winnowing Algo-
rithm. In order to verify the performance of the classification
model on new LVPs originated by ASes used in the training
phase, we perform a very simple experiment. Namely, we split
the dataset independently of the origin AS. We withhold 100
random instances of each class for testing and use the rest
for training. We find that the Winnowing Algorithm derived

in section IV-B2 performs a highly accurate classification of
the test samples, only misclassifying one out of the 200 test
tuples. In other words, when training on LVPs originated from
one particular origin AS, the algorithm has a fairly easy task
in classifying the new LVPs originated by the same AS.

VI. RELATED WORK

Machine learning in the context of the interdomain routing
has been already proven to be a successful approach. Using
traffic feature distributions, Lakhina et al. [16] show that the
existence of some anomalies can be detected from traffic
flows. In [17], the authors advance a Bayesian framework
for detecting mistakes in the router configuration files using
statistical anomalies. Relying on network data, the authors
propose in [18] the usage of statistical algorithms to detect
deviations from the long-term profile of BGP routing updates.
Similarly, in [19] the authors propose an instance-learning
framework to identify deviations from the normal defined state
of BGP routing dynamics. Likewise, in [20] Li et. al advance
a rule-based framework for the detection of abnormal routing
behaviour caused by a major worm or a blackout.

In this paper we focus on detecting anomalous events which,
despite their high impact on the routing policies, emerge as
legitimate expressions of routing policies. We use the BGP
Visibility Scanner [8] as a tool for mining LVPs and capture
their visibility dynamics. Despite that many other similar tools
[4], [5] leverage the massive amount of available routing data,
the visibility scanner is, to the best of our knowledge, the only
tool offering specific information on global prefix visibility.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we build a system for identifying cases of
prefixes which emerge in the Internet as side-effect of routing
misconfiguration or complex policy interactions. Leveraging
the popular method of boosted classification trees, we use a
unique ground-truth dataset in order to derive a classification
model for the LVPs detected by the BGP Visibility Scanner.
After extensive testing, we conclude that the proposed system
winnows unintended LVPs with 95% accuracy. This further
proves that visibility features are generally powerful to detect
anomalies which, despite their impact on the routing system,
are hard to single out. In order to develop the machine
learning algorithms, we have used standard packages for
R [13], thus reinforcing the robustness and generality of
the system. Additionally, we make available an anonymized
version of the ground-truth dataset upon request, allowing for
the reproducibility of the machine learning analysis.

Using the Winnowing Algorithm, we can further classify
new LVPs identified by the BGP Visibility Scanner. For
example, for the set of LVPs retrieved on the 14" of July,
2013, counting exactly 84,982 LVPs, the boosted decision tree
classifies 25,860 LVPs as intended (~ 30%), and the rest of
59,117 LVPs as unintended (~ 70%). We are currently in the
process of validating these results with the origin ASes.

The ground-truth dataset of 20,000 LVPs documents a wide
range of cases of previously undetected anomalous events,

affecting the interdomain entities. Though the root causes of
the anomalies we detect are recurring in the Internet, their
appearance in the BGP Visibility Scanner might change in
time. We leave for future work the analysis on the lifetime
of the ground-truth knowledge we have accumulated and the
stability of the accuracy of the winnowing system in time.

ACKNOWLEDGEMENTS

This work was partially supported by the European Commu-
nitys Seventh Framework Programme (FP7/2007-2013) grant
no. 317647 (Leone). We would like to thank Arturo Azcorra,
Alberto Garcia-Martinez, Cristel Pelsser and Randy Bush for
the discussions which helped improve this work.

REFERENCES

[1] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
misconfiguration,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
2002.

[2] L. Quan, J. Heidemann, and Y. Pradkin, “Trinocular: Understanding
Internet Reliability Through Adaptive Probing,” in Proceedings of the
ACM SIGCOMM Conference, Hong Kong, China, August 2013, p. to
appear.

[3] T. Griffin and G. Huston, “BGP Wedgies,” 2005, RFC 4264.

[4] Y.-J. Chi, R. Oliveira, and L. Zhang, “Cyclops: the AS-level connectivity
observatory,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, 2008.

[5] “RIPE Labs.” [Online]. Available: https://labs.ripe.net/

[6] C. Labovitz, A. Ahuja, and M. Bailey, “Shining Light on Dark Address
Space,” Arbor Netwoks, Ann Arbor, Michigan, USA, Tech. Rep. TR-
2001-01, November 2001.

[7]1 Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” in Proceedings of the
Second European Conference on Computational Learning Theory, ser.
EuroCOLT ’95, 1995.

[8] A. Lutu, M. Bagnulo, and O. Maennel, “The BGP Visibility Scanner,”
in IEEE Global Internet Symposium (GI 2013), April 2013.

[9] “BGP Routing Table Analysis Report.”” [Online]. Available: http:

//bgp.potaroo.net/

“Team Cymru - The Bogon Reference.” [Online]. Available: http:

/Iwww.cymru.com/BGP/bogons.html

J. Han, Data Mining: Concepts and Techniques.

USA: Morgan Kaufmann Publishers Inc., 2005.

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and

Regression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

R Core Team, R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria,

2013, ISBN 3-900051-07-0. [Online]. Available: http://www.R-project.

org/

T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical

learning: data mining, inference, and prediction. New York: Springer-

Verlag, 2001.

E. Alfaro-Cortes, M. Gamez-Martinez, and N. Garcia-Rubio, adabag:

Applies multiclass AdaBoost.M 1, AdaBoost-SAMME and Bagging, 2012.

A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic

feature distributions,” in Proceedings of SIGCOMM 05, 2005.

K. El-Arini and K. Killourhy, “Bayesian Detection of Router Configura-

tion Anomalies,” in Proceedings of the 2005 ACM SIGCOMM workshop

on Mining network data, ser. MineNet "05, 2005.

K. Zhang, A. Yen, X. Zhao, D. Massey, S. F. Wu, and L. Zhang, “On

Detection of Anomalous Routing Dynamics in BGP,” in NETWORKING,

2004.

J. Zhang, J. Rexford, and J. Feigenbaum, “Learning-based anomaly

detection in BGP updates,” in Proceedings of the 2005 ACM SIGCOMM

workshop on Mining network data, ser. MineNet 05, 2005, pp. 219-220.

J. Li, D. Dou, Z. Wu, S. Kim, and V. Agarwal, “An internet routing

forensics framework for discovering rules of abnormal BGP events,”

SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, October 2005.

[10]

(11]

San Francisco, CA,

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AlbertusExtraBold
 /AlbertusMedium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AntiqueOlive
 /AntiqueOliveBold
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOliveItalic
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CGOmega
 /CGOmegaBold
 /CGOmegaBoldItalic
 /CGOmegaItalic
 /CGTimes
 /CGTimesBold
 /CGTimesBoldItalic
 /CGTimesItalic
 /Chiller-Regular
 /ClarendonCondensedBold
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /EstrangeloEdessa
 /FootlightMTLight
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /Garamond
 /GaramondAntiqua
 /Garamond-Bold
 /GaramondHalbfett
 /Garamond-Italic
 /GaramondKursiv
 /GaramondKursivHalbfett
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /HelveticaBlack
 /HelveticaBlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaLight
 /HelveticaLightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothicBold
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothicItalic
 /LetterGothic-Slanted
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /Mangal-Regular
 /Marigold
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OldEnglishTextMT
 /Onyx
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Parchment-Regular
 /Playbill
 /PoorRichard-Regular
 /Raavi
 /Ravie
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Univers
 /UniversBold
 /Univers-Bold
 /UniversBoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /UniversCondensedBold
 /Univers-CondensedBold
 /UniversCondensedBoldItalic
 /Univers-CondensedBoldOblique
 /UniversCondensedMedium
 /UniversCondensedMediumItalic
 /Univers-CondensedOblique
 /UniversMedium
 /UniversMediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

